If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8c^2-6c=0
a = -8; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·(-8)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*-8}=\frac{0}{-16} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*-8}=\frac{12}{-16} =-3/4 $
| 6-6n=4-5n | | 2(2+2.5)=x² | | 5v^2-2v-51=0 | | 3x-1=x-6+x | | 4x–9=11x | | 7^(x+1)=3^2x | | 5x-3(2x+5)=5-(x+20) | | 3x2-11x-2=0 | | 3r=2r+2r | | 16b-4=32b+84 | | 11n^2-11n+9=0 | | 6n^2-6n=22 | | b+1=1+b-4 | | 138-x=189 | | 2(x+2)=2.5² | | 2(x+2)=2.5 | | 8-2x=9-x | | 184=-v+36 | | 3(2x+4)=2(5x-7) | | -6n-7=1-7n | | 6x2+5x-40=0 | | -3/5x=-50 | | P=–x^2+10x–12 | | 18+7=c | | -w+289=21 | | -21=-u/9 | | 2x^2+10=-210 | | -2x+4x-4=4+4x | | 13x-21=85 | | 5(x+5)=6x20 | | 13x+65=76 | | 1-5x=-9+x |